# PROAQUA Evolution of aquatic systems monitoring

# **Environmental DNA (eDNA) testing:**

- Cells from the target species are released into the environment
- DNA from these cells can be collected from a water sample and tested for the presence of a target species of interest
- Completely non-invasive

## **Problem:**

- The eDNA test is completely dependent upon a technique called gPCR •
- Test reliability is dependent on appropriate design, validation, and execution
- Current eDNA tests cannot distinguish between a poor guality DNA sample and the actual absence of the target animal species (eTarget)



## Solution:

- We introduced several innovations to eDNA tests to improve reliability
  - Veldhoen et al (2016) Implementation of Novel Design Features for gPCR-Based eDNA Assessment. PLoS ONE 11(11): e0164907. doi:10.1371/journal.pone.0164907
- We created a direct test for DNA quality through an internal DNA amplification control (ePlant) that is always present in a water sample
- A positive ePlant result means a viable sample that can be tested with eTarget
- A negative ePlant result means a poor quality sample



## **Available Validated eDNA Tests**

| Species                       | Common Name                   |
|-------------------------------|-------------------------------|
| Ambystoma mavortium*          | Western tiger salamander      |
| Ambystoma tigrinum*           | Eastern tiger salamander      |
| Anaxyrus (Bufo) boreas        | Western toad                  |
| Ascaphus montanus             | Rocky mountain tailed frog    |
| Ascaphus truei                | Pacific (Coastal) tailed frog |
| Lithobates (Rana) catesbeiana | North American bullfrog       |
| Lithobates (Rana) pipiens     | Northern leopard frog         |
| Oncorhynchus clarkii          | Cutthroat trout               |
| Oncorhynchus kisutch          | Coho salmon                   |
| Oncorhynchus mykiss           | Rainbow trout                 |
| Oncorhynchus nerka            | Sockeye salmon                |
| Oncorhynchus tschawytscha     | Chinook salmon                |
| Rana aurora                   | Northern red-legged frog      |
| Rana cascadae                 | Cascades frog                 |
| Rana luteiventris             | Columbia spotted frog         |
| Rana pretiosa                 | Oregon spotted frog           |
| Sorex bendirii                | Pacific water shrew           |
| Thymallus arcticus            | Arctic grayling               |
| Spea intermontana             | Great Basin spadefoot         |
| eFish                         | Generic fish                  |
| eFrog                         | Generic frog                  |
| eMammal                       | Generic mammal not human      |

\*Species are indistinguishable in current test

## For more information contact:

Dr. Caren Helbing, PhD Professor, Department of Biochemistry & Microbiology University of Victoria, Victoria, British Columbia, V8P 5C2 Canada Phone: 250-721-6146/250-721-7086 Email: <u>chelbing@uvic.ca</u> Web: web.uvic.ca/~chelbing



## **Aquatic Animal Health Monitoring with Minimal Impact**

- Innovations in genomics technology allow us to obtain a snapshot of fish or frog health
- RNA molecules are isolated from animal tissues that indicate which genes are being used
- Some genes are important in normal growth and development and can serve as markers for disease
- Some genes can be activated by stress or pollutants
- A small tissue sample from a fin is enough to evaluate stress or exposure to pollutants

### Enhanced reliability with the PROAQUA advantage

- We have developed tests based upon the detection of gene activity important in development, reproduction, and growth
- Test reliability is dependent on appropriate design, validation, and execution and is appropriate for the species of interest
- The tests are very sensitive and can reveal sublethal deleterious effects
- They are more informative than typical toxicity tests that test for mortality or morbidity

#### For more information contact:

Dr. Caren Helbing, PhD Professor, Department of Biochemistry & Microbiology University of Victoria, Victoria, British Columbia, V8P 5C2 Canada Phone: 250-721-6146 Email: chelbing@uvic.ca Web: web.uvic.ca/~chelbing